منابع مشابه
Apprentissage de représentations probabilistes pour la prédiction de diffusions d'informations sur les réseaux sociaux
Based on the well-known Independent Cascade (IC) model, we embed users of the social network in a representation space to extract more robust diffusion probabilities than those defined by classical graphical learning approaches for social influence modeling. Better generalization abilities provided by the use of such a projection space allows our approach to present good performances on various...
متن کاملMémoire Sur Les Probabilités∗
I intend to treat in this Memoir two important points in the analysis of chances which do not seem yet to have been sufficiently deeply studied: the first has for object the manner of calculating the probability of events composed of simple events of which one does not know the respective probabilities; the object of the second is the influence of past events on the probability of future events...
متن کاملMémoire Sur Les Suites
The theory of series is one of the most important objects of Analysis: all problems which reduce to some approximations, and consequently nearly all the applications of Mathematics to Nature, depend on this theory; thus we see that it has principally fixed the attention of the geometers; they have found a great number of beautiful theorems and ingenious methods, either in order to expand functi...
متن کاملMarches Aléatoires sur les Groupes
Dans cet article, on va étudier les marches aléatoires sur les graphes et sur les groupes. Enfin, on trouvera une condition nécessaire et suffisante pour la récurrence des marches aléatoires sur les groupes. La condition est très similaire à celle des marches aléatoires sur Zd. La démonstration qu’on donnera est la plus courte. Cependant, on admet le théorème 4.15 de Gromov sur la relation entr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mémoires de la Société mathématique de France
سال: 1971
ISSN: 0249-633X,2275-3230
DOI: 10.24033/msmf.36